Name:_____

Score:

- **1(15pts)** (a) State the definition of $\lim_{x \to a^S} f(x) = L$.
 - (b) State the definition of uniform convergence for a sequence of functions f_n on $S \subset \mathbb{R}$.
 - (c) State the Cauchy criterion for uniform convergence of infinite series of functions on a subset: $\sum f_n(x), x \in S \subset \mathbb{R}$.
- **2(15pts)** Prove that $\lim_{x \to a^S} f(x) = +\infty$ with $a \in \mathbb{R}$ if and only if $\forall N > 0, \ \exists \delta > 0$ such that $|x a| < \delta, \ x \in S$ implies f(x) > N.
- **3(15pts)** Consider $a_n = 3^{(-1)^n n}$
 - (a) Find $\limsup a_n^{1/n}$, $\liminf a_n^{1/n}$, $\limsup \frac{a_{n+1}}{a_n}$, $\liminf \frac{a_{n+1}}{a_n}$.
 - (b) Find the radius of convergence for $\sum 3^{(-1)^n-n}x^{2n+1}$.
 - (c) Determine the interval of convergence for $\sum 3^{(-1)^n-n}x^{2n+1}$.
- **4(15pts)** Prove that a continuous function f on a bounded closed interval [a, b] is uniformly continuous.
- **5(15pts)** Let $f_n(x) = |x|^n$.
 - (a) Does f_n uniformly converge on [-1,1]? Justify your answer.
 - (b) Does f_n uniformly converge on (a, b) with -1 < a < b < 1? Justify your answer.
- **6(15pts)** Prove that the uniformly convergent limit f of a sequence of continuous functions $\{f_n\}$ on a subset $S \subset \mathbb{R}$ is a continuous function on S.
- **7(15pts)** Do (a) or (b) but not both.
 - (a) State and PROVE the Intermediate Value Theorem.
 - (b) Show that if f is a continuous function on [a, b], then there exists $x_*, x^* \in [a, b]$ such that $f(x_*) \leq f(x) \leq f(x^*)$ for all $x \in [a, b]$.